On the formation, ventilation, and erosion of mode waters in the North Atlantic and Southern Oceans

نویسندگان

  • D. S. Trossman
  • L. Thompson
  • S. Mecking
  • M. J. Warner
چکیده

[1] The mean residence times, subduction rates, and formation rates of Subtropical Mode Water (STMW) and Subpolar Mode Water (SPMW) in the North Atlantic and Subantarctic Mode Water (SAMW) in the Southern Ocean are estimated by combining a model and observations of chlorofluorocarbon-11 (CFC-11) via Bayesian Model Averaging (BMA), a statistical technique that weights model estimates according to how close they agree with observations. Subduction rates are estimated in two different ways to investigate the non-advective contribution to thermocline ventilation, which in turn are compared to formation rate estimates. One subduction rate estimate is based on entrainment/detrainment velocities and the other subduction rate estimate allows ventilation to be both an advective and diffusive process instead of a purely advective one by using transit-time distributions (TTDs). It is found that the subduction of all three mode waters is mostly an advective process, but up to about one-third of STMW subduction likely owes to non-advective processes. Also, while the formation of STMW is mostly due to subduction, the formation of SPMW is mostly due to other processes. About half of the formation of SAMW is due to subduction and half is due to other processes. A combination of air-sea flux, acting on relatively short timescales, and turbulent mixing, acting on a wide range of timescales, is likely the dominant SPMW erosion mechanism. Air-sea flux is likely responsible for most STMW erosion, and turbulent mixing is likely responsible for most SAMW erosion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shallow, Intermediate, and Deep Overturning Components of the Global Heat Budget

The ocean’s overturning circulation and associated heat transport are divided into contributions based on water mass ventilation from 1) shallow overturning within the wind-driven subtropical gyres to the base of the thermocline, 2) overturning into the intermediate depth layer (500–2000 m) in the North Atlantic and North Pacific, and 3) overturning into the deep layers in the North Atlantic (N...

متن کامل

Recent changes in the ventilation of the southern oceans.

Surface westerly winds in the Southern Hemisphere have intensified over the past few decades, primarily in response to the formation of the Antarctic ozone hole, and there is intense debate on the impact of this on the ocean's circulation and uptake and redistribution of atmospheric gases. We used measurements of chlorofluorocarbon-12 (CFC-12) made in the southern oceans in the early 1990s and ...

متن کامل

Contributions of Atlantic Ocean to June-August Rainfall over Uganda and Western Kenya

This study investigates the contributions of Atlantic Ocean to June-August rainfall over Uganda and western Kenya (KU). The study has utilized the datasets including precipitation from the Global Precipitation Climatology Centre, North Atlantic Oscillation Index (NAOI), South Atlantic Ocean Dipole Index (SAODI), ERA-interim reanalysis, and the Atlantic Ocean Sea Surface Temperature (SST). Singu...

متن کامل

Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components

Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the maj...

متن کامل

Evaluation of interior circulation in a high resolution global ocean model; Part II: Southern Hemisphere Intermediate, Mode and Thermocline Waters

A high-resolution, off-line, ocean general circulation model, incorporating a realistic parameterisation of mixed layer convection is used to diagnose pathways and timescales of Southern Hemisphere Intermediate, Mode and thermocline water ventilation. Simulated and observed CFC-11 are in reasonably good agreement, demonstrating the model’s skill in representing realistic ventilation. Regional p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012